GBZ

中华人民共和国国家职业卫生标准

GBZ/T 160.49-2004

工作场所空气有毒物质测定 硫醇类化合物

Methods for determination of mercaptans in the air of workplace

2004-05-21 发布

2004-12-01 实施

前 言

为贯彻执行《工业企业设计卫生标准》(GBZ 1)和《工作场所有害因素职业接触限值》(GBZ 2),特制定本标准。本标准是为工作场所有害因素职业接触限值配套的监测方法,用于监测工作场所空气中硫醇类化合物[包括甲硫醇(Methyl mercaptan)、乙硫醇(Ethyl mercaptan)等]的浓度。本标准是总结、归纳和改进了原有的标准方法后提出。这次修订将同类化合物的同种监测方法和不同种监测方法归并为一个标准方法,并增加了长时间采样和个体采样方法。

本标准从 2004 年 12 月 1 日起实施。同时代替 GB/T 17064—1997。

本标准首次发布于1997年,本次是第一次修订。

本标准由全国职业卫生标准委员会提出。

本标准由中华人民共和国卫生部批准。

本标准起草单位:天津市疾病预防控制中心、四川省疾病预防控制中心。

本标准主要起草人: 扈健、刘黛莉、武皋绪和赵承礼。

工作场所空气有毒物质测定 硫醇类化合物

1 范围

本标准规定了监测工作场所空气中硫醇类化合物浓度的方法。

本标准适用于工作场所空气中硫醇类化合物浓度的测定。

2 规范性引用文件

下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GBZ 159 工作场所空气中有害物质监测的采样规范

3 甲硫醇和乙硫醇的溶剂洗脱—气相色谱法

3.1 原理

空气中的甲硫醇和乙硫醇用浸渍玻璃纤维滤纸采集,盐酸溶液洗脱,二氯甲烷提取后进样,经色谱柱分离,火焰光度检测器检测,以保留时间定性,峰面积定量。

3.2 仪器

- 3.2.1 浸渍玻璃纤维滤纸,将玻璃纤维滤纸放入乙酸汞溶液中浸透,取出在暗处晾干。
- 3.2.2 采样夹,滤料直径 40mm。
- 3.2.3 小型塑料采样夹,滤料直径 25mm。
- 3.2.4 空气采样器,流量 0~3L/min。
- 3.2.5 分液漏斗,30ml。
- 3.2.6 注射器,50ml。
- 3.2.7 血清瓶,100ml。
- 3.2.8 具塞试管,5ml。
- 3.2.9 微量注射器,10µl。
- 3.2.10 气相色谱仪,火焰光度检测器。

仪器操作参考条件

色谱柱: $3m \times 4mm$ 玻璃柱,经磷酸溶液(10mol/L)浸泡过夜。 β , β -氧二丙腈:201 红色硅烷化担体=25:100;

柱温:75℃;

汽化室温度:110℃;

检测室温度:110℃;

载气(氮气)流量:60ml/min。

3.3 试剂

试剂为分析纯。

- 3.3.1 盐酸, $\rho_{20}=1.18g/ml$ 。
- 3.3.2 乙酸汞溶液,50g/L,临用前配制。

- 3.3.3 盐酸溶液,4mol/L。
- 3.3.4 二氯甲烷,色谱鉴定无干扰杂质峰。
- **3.3.5** β,β-氧二丙腈,色谱固定液。
- 3.3.6 201 红色硅烷化担体,60~80 目。
- 3.3.7 标准溶液:
- 3.3.7.1 甲硫醇标准溶液:于 100ml 血清瓶(盖内衬塑料膜)中,加入 100ml 二氯甲烷,用 50ml 注射器准确取 30ml 甲硫醇气体(在 20℃时,1ml 甲硫醇气体为 2.0mg),注入二氯甲烷中,溶解;此溶液为 0.60mg/ml 标准贮备液。置冰箱内保存。临用前,用二氯甲烷稀释成 10.0μg/ml 标准溶液。或用国家 认可的标准溶液配制。
- 3.3.7.2 乙硫醇标准溶液:在 50ml 容量瓶中,加入约 20ml 二氯甲烷,准确称量后,加入 1 滴乙硫醇 (色谱纯)品,再准确称量,振摇溶解,加二氯甲烷至刻度,由 2 次称量之差计算溶液的浓度,为标准贮备液。临用前,用二氯甲烷稀释成 10.0μg/ml 标准溶液。或用国家认可的标准溶液配制。

3.4 样品的采集、运输和保存

现场采样按照 GBZ 159 执行。

- 3.4.1 短时间采样:在采样点,将装好浸渍玻璃纤维滤纸的采样夹,以1L/min 流量采集15min 空气样品。
- 3.4.2 长时间采样:在采样点,将装好浸渍玻璃纤维滤纸的小型塑料采样夹,以 1L/min 流量采集 2~4h 空气样品。
- 3.4.3 个体采样:在采样点,将装好浸渍玻璃纤维滤纸的小型塑料采样夹,佩戴在采样对象的前胸上部,进气口尽量接近呼吸带,以1L/min 流量采集2~4h 空气样品。
- 3.4.4 样品空白:将装好浸渍玻璃纤维滤纸的采样夹至采样点,除不连接采样器采集空气样品外,其余操作同样品。

采样后,将滤纸的接尘面朝里对折 2 次后,置清洁容器内避光运输和保存。样品在室温下避光保存可稳定 7d。

3.5 分析步骤

- 3.5.1 样品处理:将采过样的浸渍玻璃纤维滤纸放入已装有 10ml 盐酸溶液和 10ml 二氯甲烷的分液漏斗中,立即塞好塞子,振摇 1min,不要放气。待两相分开后,取 1.0ml 二氯甲烷提取液置具塞试管中,供测定。若浓度超过测定范围,用二氯甲烷稀释后测定,计算时乘以稀释倍数。
- 3.5.2 标准曲线的绘制:用二氯甲烷稀释标准溶液成 0.0、0.5、1.0、3.0 和 5.0 μ g/ml 甲硫醇或乙硫醇标准系列。参照仪器操作条件,将气相色谱仪调节至最佳测定状态,进样 1.0 μ g/ml 甲硫醇或乙硫醇每个浓度重复测定 3 次。以测得的峰面积均值平方根对相应的甲硫醇或乙硫醇浓度(μ g/ml)绘制标准曲线。
- 3.5.3 样品测定:用测定标准系列的操作条件测定样品和样品空白提取液,测得的峰面积平方根值后,由标准曲线得甲硫醇或乙硫醇浓度(μg/ml)。

3.6 计算

3.6.1 按式(1)将采样体积换算成标准采样体积:

$$V_0 = V \times \frac{293}{273 + t} \times \frac{P}{101.3}$$
(1)

式中:

Vo---标准采样体积,L;

V-----采样体积,L;

t——采样点的气温,℃;

P---采样点的大气压,kPa。

3.6.2 按式(2)计算空气中甲硫醇或乙硫醇的浓度:

$$C = \frac{10c}{V_0 D}$$
(2)

式中:

- C---空气中甲硫醇或乙硫醇的浓度,mg/m³;
- 10——提取液的总体积,ml;
- c——测得样品溶液中甲硫醇或乙硫醇的浓度(减去样品空白),μg/ml;
- Vo---标准采样体积,L;
- D——洗脱和提取效率,%。
- 3.6.3 时间加权平均接触浓度按 GBZ 159 规定计算。

3.7 说明

- 3.7.1 本法的检出限为 $0.2\mu g/ml$;最低检出浓度为 $0.13mg/m^3$ (以采集 15L 空气样品计)。测定范围为 $0.2\sim 5\mu g/ml$ 。相对标准偏差为 $1.6\%\sim 3.9\%$ 。
- **3.7.2** 本法的采样效率为 93.5%~100%。洗脱提取效率为 90.2%~94.6%。每批滤膜必须测定其洗脱效率。
- 3.7.3 硫化氢不干扰测定。
- 3.7.4 本法可以采用相应的毛细管色谱柱。
- 4 乙硫醇的对氨基二甲基苯胺分光光度法

4.1 原理

空气中的乙硫醇用浸渍玻璃纤维滤纸采集,乙酸汞溶液解吸后,在强酸性溶液和三氯化铁存在下,与对氨基二甲基苯胺反应,生成红色络合物,在500nm 波长下测定吸光度,进行定量。

4.2 仪器

- 4.2.1 浸渍玻璃纤维滤纸:将超细玻璃纤维滤纸放入乙酸汞溶液中浸透,取出在暗处晾干。
- 4.2.2 采样夹,滤料直径 40mm。
- 4.2.3 小型塑料采样夹,滤料直径 25mm。
- 4.2.4 空气采样器,流量 0~3L/min。
- 4.2.5 具塞比色管,25ml。
- 4.2.6 分光光度计,500nm。
- 4.3 试剂

实验用水为蒸馏水,试剂均为分析纯。

- 4.3.1 盐酸, $\rho_{20} = 1.18 \text{g/ml}$ 。
- 4.3.2 硝酸, $\rho_{20} = 1.42 \text{g/ml}$ 。
- **4.3.3** 洗脱液:称取 50g 乙酸汞,溶于 400ml 水,加入 25ml 冰乙酸,用水稀释至 1L,若有沉淀,过滤后使用。
- **4.3.4** 三氯化铁溶液:称取 67.6g 三氯化铁(FeCl₃·6H₂O)溶于水并稀释至 500ml; 另取 72ml 浓硝酸,加入 200ml 水中,并稀释至 500ml; 然后将两溶液混合。
- 4.3.5 对氨基二甲基苯胺溶液:称取 0.3g N,N-二甲基对苯二胺盐酸盐,溶于 300ml 盐酸中,避光保存。
- 4.3.6 显色剂:临用前,将1体积三氯化铁溶液和3体积对氨基二甲基苯胺溶液混合均匀。
- 4.3.7 标准溶液:在 50ml 量瓶中,加入约 20ml 洗脱液,准确称量后,加入 1 滴乙硫醇(色谱纯),再准确称量,振摇溶解,加洗脱液至刻度,由 2 次称量之差计算溶液的浓度,为标准贮备液。临用前,用洗脱液稀释成 10.0μg/ml 乙硫醇标准溶液。或用国家认可的标准溶液配制。

4.4 样品的采集、运输和保存

现场采样按照 GBZ 159 执行。

- 4.4.1 短时间采样:在采样点,将装好浸渍玻璃纤维滤纸的采样夹,以 1L/min 流量采集 15min 空气样品。
- **4.4.2** 长时间采样:在采样点,将装好浸渍玻璃纤维滤纸的小型塑料采样夹,以 1L/min 流量采集 2~4h 空气样品。
- 4.4.3 个体采样:在采样点,将装好浸渍玻璃纤维滤纸的小型塑料采样夹,佩戴在采样对象的前胸上部,尽量接近呼吸带,以1L/min 流量采集2~4h 空气样品。
- 4.4.4 样品空白:将装好浸渍玻璃纤维滤纸的采样夹至采样点,除不连接采样器采集空气样品外,其余操作同样品。

采样后,将滤纸的接尘面朝里对折后,置具塞比色管内避光运输和保存。样品在室温下避光保存可稳定 7d。

4.5 分析步骤

- 4.5.1 样品处理:向装有浸渍玻璃纤维滤纸的具塞比色管中,加入 10.0ml 洗脱液,洗脱 15min。洗脱液供测定。若浓度超过测定范围,用洗脱液稀释后测定,计算时乘以稀释倍数。
- **4.5.2** 标准曲线的绘制:取7只具塞比色管,分别加入 0.00、0.50、1.00、2.00、3.00、4.00、5.00ml 标准溶液,各加洗脱液至 10.0ml,配成 0.0、5.0、10.0、20.0、30.0、40.0、50.0 μ g 乙硫醇标准系列。向各标准管加入 2ml 显色剂,在旋涡混合器上混匀,放置 30min。在 500nm 波长下测定吸光度,每个浓度重复测定 3次,以测得的吸光度均值对乙硫醇含量(μ g)绘制标准曲线。
- 4.5.3 样品测定:用测定标准系列的操作条件测定样品和样品空白洗脱液;测得的吸光度值后,由标准曲线得乙硫醇含量(μg)。

4.6 计算

- 4.6.1 按式(1)将采样体积换算成标准采样体积。
- 4.6.2 按式(3)计算空气中乙硫醇的浓度:

$$C = \frac{m}{V_0} \dots (3)$$

式中:

C---空气中乙硫醇的浓度,mg/m³;

m——测得洗脱液中乙硫醇含量(减去样品空白),μg;

Vo---标准采样体积,L;

4.6.3 时间加权平均接触浓度按 GBZ 159 规定计算。

4.7 说明

- **4.7.1** 本法的检出限为 $2.5\mu g$,最低检出浓度为 $0.3mg/m^3$ (以采集 15L 空气样品计)。测定范围为 $5\sim50\mu g$,相对标准偏差为 $1.8\%\sim5.2\%$ 。
- 4.7.2 本法的采样效率为93.5%~100%。平均洗脱效率为97.3%。每批滤膜必须测定其洗脱效率。
- 4.7.3 标准和样品加显色剂后,若有浑浊现象,需过滤后测定。